

DATASHEET COMPARISON

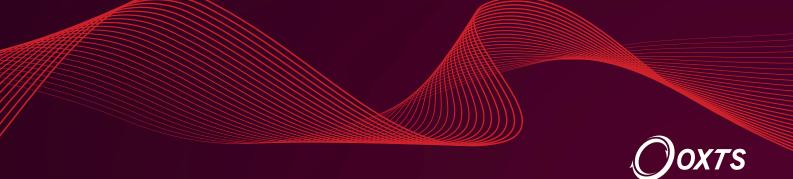
# How does the RT3000 v4 compare?

#### Key features:

- + Quad constellation
- + Dual antenna
- + RTK
- + 90% average improvement in heading, pitch, roll, velocity, and slip angle accuracy
- + 50% smaller and 70% lighter
- + Wider power input range and lower power consumption
- + Extended operating temperature range



oxts.com


## Specification Comparison

| SPEC                         | RT3000 v4                                         | RT3003 v2                         |  |
|------------------------------|---------------------------------------------------|-----------------------------------|--|
| GNSS                         | GPS L1 L2<br>GLO L1 L2<br>GAL E1 E5b<br>BDS B1 B2 | GPS L1 L2<br>GLO L1 L2 (optional) |  |
| Position accuracy (m)        | 0.01 RTK<br>0.6 SBAS<br>1.5 SPS                   | 0.01 RTK<br>0.6 SBAS<br>1.5 SPS   |  |
| Heading accuracy (deg)       | 0.04 (1m baseline)                                | 0.1 (2m baseline)                 |  |
| Roll/pitch accuracy (deg)    | 0.01                                              | 0.03                              |  |
| Velocity accuracy (km/h)     | 0.025                                             | 0.05                              |  |
| Slip angle accuracy (deg)    | 0.05                                              | 0.15                              |  |
| Update rate (Hz)             | 100                                               | 100                               |  |
| Gyro range (deg/s)           | 490                                               | 100                               |  |
| Gyro bias stability (deg/hr) | 0.8                                               | 2                                 |  |
| ARW (deg/°hr)                | 0.12                                              | 0.2                               |  |
| Accel range (g)              | 8                                                 | 10                                |  |
| Accel bias stability (mg)    | 0.005                                             | 0.002                             |  |
| VRW (m/s/⊧hr]                | 0.012                                             | 0.005                             |  |
| Weight (g)                   | 690                                               | 2400                              |  |
| Dimensions (mm)              | 120 x120 x120                                     | 234 x 120 x 80                    |  |
| Supply voltage               | 10 - 48 V dc                                      | 10 - 25 V dc                      |  |
| Power (W)                    | 6                                                 | 20 W                              |  |
| Operating temp (deg C)       | -40 to 70                                         | -10 to 50                         |  |
| Environmental protection     | IP65                                              | IP65                              |  |
| Internal storage             | 32 GB                                             | 2 GB                              |  |



# Functional Upgrades

| FEATURE                              | WHY IT'S GOOD                                                                                                                                                                                                             | WHAT YOU GET                                                                                                                                                                                                      |
|--------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Quad-constellation<br>GNSS receivers | <ul> <li>+ More RTK and satellite coverage<br/>globally.</li> <li>+ Improved visibility in challenging<br/>environments.</li> </ul>                                                                                       | <ul> <li>+ More data at centimetre-level<br/>accuracy.</li> <li>+ Increased reliability and<br/>robustness of positioning.</li> </ul>                                                                             |
| New IMU design                       | + Smaller and lighter.<br>+ Lower power consumption.<br>+ Shorter warmup time.                                                                                                                                            | <ul> <li>+ Higher accuracy when measuring<br/>dynamics like roll/pitch, and<br/>accelerations.</li> <li>+ Greater confidence in your data.</li> <li>+ Begin testing faster so you can<br/>test longer.</li> </ul> |
| New processor                        | + More powerful.<br>+ Capable of running RT-Range.<br>+ Additional processing power.                                                                                                                                      | <ul> <li>+ Streamline your setup.</li> <li>+ Additional processing power<br/>futureproofs your product against<br/>new developments and upgrades</li> </ul>                                                       |
| New firmware                         | <ul> <li>+ Fully supported firmware.</li> <li>+ GNSS enhancements.</li> <li>+ RT-Range enhancements.</li> <li>+ PTP synchronisation.</li> <li>+ Indoor positioning.</li> <li>+ Future roadmap of enhancements.</li> </ul> | <ul> <li>+ Better quality data.</li> <li>+ Use your GNSS/INS in more<br/>environments.</li> <li>+ Performance will improve as<br/>future functionality added.</li> </ul>                                          |
| New interfaces                       | + CAN-FD interface.<br>+ Integrated NTRIP modem.<br>+ Additional ethernet interfaces.                                                                                                                                     | <ul> <li>+ Meet the higher bandwidth<br/>requirements of modern vehicles.</li> <li>+ No need for a direct radio link to a<br/>base station.</li> <li>+ Get accurate test data on the<br/>open road.</li> </ul>    |
| ITAR-free                            | <ul> <li>+ No restrictions when exporting globally.</li> <li>+ Reduced time and hassle exporting devices.</li> </ul>                                                                                                      | <ul> <li>+ Expand into new markets more<br/>easily.</li> <li>+ Demo or testing in other<br/>territories.</li> </ul>                                                                                               |



# **Real world performance comparison**


### Highlights

- + 6x faster warm up
- + Average of 90% improvement across dynamics measurements
- + Enhanced data clarity and quality

#### Warm up

During warm up, pitch and roll accuracies converge in under a minute, with the accuracies being almost twice as good as the v2. For vehicle dynamics testing where precision measurement of vehicle motion is key, the v4 gives you more confident data, quicker.

|                                 | v2     | v4    | % IMPROVEMENT |
|---------------------------------|--------|-------|---------------|
| Pitch convergence time (s)      | 328.94 | 45.98 | 615%          |
| Pitch convergence value (deg)   | 0.020  | 0.011 | 89%           |
| Roll convergence time (s)       | 343.94 | 51.98 | 562%          |
| Roll convergence value (deg)    | 0.020  | 0.011 | 90%           |
| Average convergence time (s)    | 336.44 | 49.98 | 587%          |
| Average convergence value (deg) | 0.020  | 0.011 | 90%           |

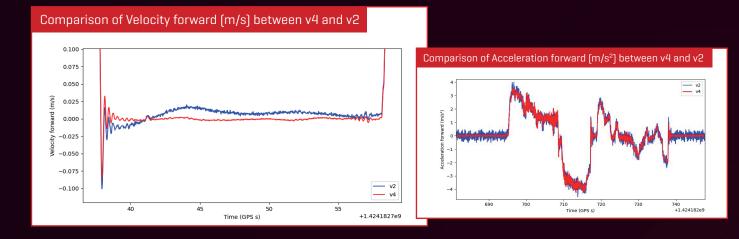




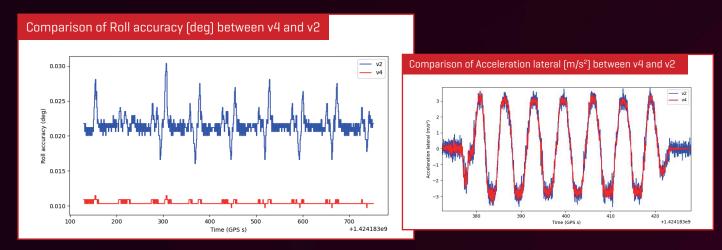
#### **Dynamic Manoeuvers**

A variety of dynamic manoeuvres were performed after the warm up period, including straight line acceleration and braking, slalom, emergency lane change, and circle manoeuvres.

Overall, the RT3000 v4 provides ~90% improvement in position and dynamic measurements compared to the RT3000 v2.

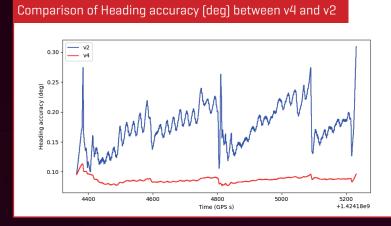

The performance of each system was evaluated by comparing the forwards processed and backwards processed data of each device to create two independent data sets with roughly equivalent errors between them for each device. The difference between the forwards and backwards processes were then calculated for the metrics shown in the table below.

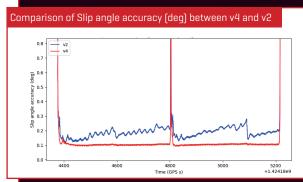
|                              | v2     | v4     | % IMPROVEMENT |
|------------------------------|--------|--------|---------------|
| DiffPosNorth (m) Std:        | 0.0122 | 0.0071 | 72.7%         |
| DiffPosEast (m) Std:         | 0.0109 | 0.0083 | 31.2%         |
| DiffPosHorizontal (m) Std:   | 0.0163 | 0.0109 | 50.1%         |
| DiffVelNorth (m/s) Std:      | 0.0084 | 0.0039 | 117.8%        |
| DiffVelEast (m/s) Std:       | 0.0079 | 0.0054 | 45.9%         |
| DiffVelHorizontal (m/s) Std: | 0.0116 | 0.0067 | 73.6%         |
| DiffHeading (deg) Std:       | 0.0742 | 0.0313 | 136.6%        |
| DiffPitch (deg) Std:         | 0.0181 | 0.0097 | 87.1%         |
| DiffRoll (deg) Std:          | 0.0195 | 0.0077 | 153.9%        |
| DiffAccelForward (m/s²) Std: | 0.2055 | 0.1714 | 19.9%         |
| DiffAccelLateral (m/s²) Std: | 0.3039 | 0.1707 | 78.0%         |
| DiffYawRate (deg/s) Std:     | 0.2624 | 0.1013 | 159.0%        |


The plots in the following sections show extracts of the data output by each system during the different dynamic manoeuvres.

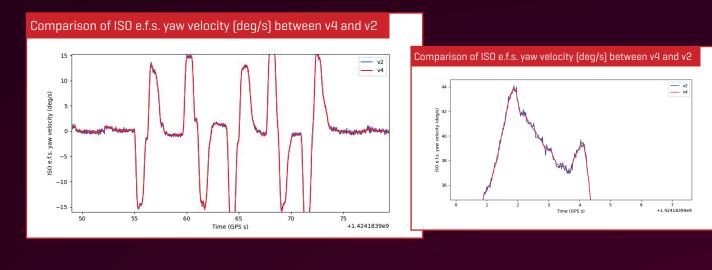


#### Straight line acceleration and braking





#### Slalom






#### Circles





#### Lane change





If you are interested in better performance, spending less time setting up, and enhanced data clarity, contact us today to trade-in.

