

AVAD3: Detector for audio/visual signals from the vehicle

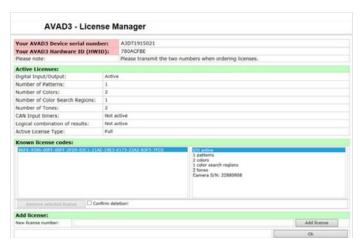
Applicationareas:

- EuroNCAP •
- NHTSA FCW
- NHTSA LDW And

many more

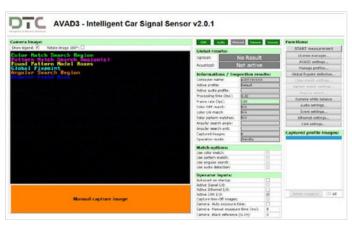
EuroNCAP test protocol:

- Speed Assist Systems
- Lane Support Systems
- AEB Systems (T AEB , FFCW)


AVAD3: Detector for audio/visual signals from the vehicle

AVAD3 detects acoustic and optical warnings and messages from inside the vehicle and then directs them to the driver. A high-performance camera and microphone are fitted for this purpose. It triggers corresponding trigger signals as digital I/O, LAN and CAN messages within a few milliseconds whenever it detects sound patterns, shape and colour changes on the instrument cluster and head-up display. The AVAD3's core is a very fast, top-quality processor for sound and image process- ing, which is housed with all of the signal processing and in-terface modules in a robust automotive and passively cooled housing.

AVAD3: Basic system


The basic AVAD3 version is fitted with a high-performance cam- You can freely and easily configure the colours and sounds with a maximum output rate of 1 KHz.

You can use the license manager to easily unlock other options.

AVAD3: the software

era and a microphone as well as the associated cabling. The that you want via the AVAD3's menu. Fixed patterns and software ensures easy handling and easy system configura- tion. search areas can be pre-set so that the system will search for The following options are enabled as standard options: 2 colours, changes with the corresponding signalling outputs latencies 2 tones, 1 pattern, 1 search area. Image processing works with a in the ms range. Save the measurement profiles whenever 100 Hz frame rate (up to 300 Hz as an option); CAN and LAN work you like, and you can access them again for the next measure- ment.

Camera settings configuration menu.

Option MF – Expanding colour detection

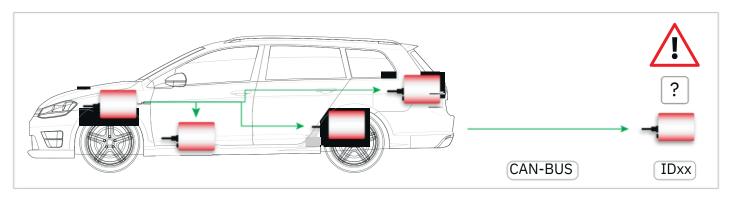
parallel.

Expanded search using four separately configured colours.

Option MM – Expanded pattern detection

The basic AVAD3 version is able to detect 2 colours. They can be The basic AVAD3 version is able to detect one pattern. It can freely configured and adapted to meet your requirements. The be freely configured and adapted to meet your requirements/ new TFT displays and the corresponding colour and shape dis- shapes. Expand your AVAD3 by adding the required pattern play options provide many new options for developers and de- de- tection to your AVAD3 to simultaneously test the various signers. We provide you with the option to enable other AVAD3 assis- tance systems that work in parallel and output the colour options so that you can cover these various options with a corresponding signals. This will save you time when test setup. You can then test a wide range of combinations in developing and testing the systems. AVAD3 can work simultaneously with up to eight con-figured patterns.

Expanded search using three separately defined patterns.


Option CI - Expanding the CAN input

The CI option is used for high-precision measuring of the CAN signal delay between the control unit and the display in the instrument cluster.

Feed your CAN test message directly into the AVAD3 and obtain a precise measurement of the vehicle's signalling process with ms accuracy. The AVAD3 is also able to test optical or acoustic signalling - both are possible with this high-precision test equipment.

Latency between the signal input and the display

Option ES - Expanding audio signal detection

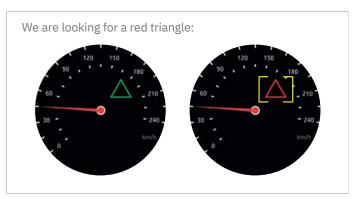
filters.

Selection of audio frequencies and amplitudes taken from the signal spectrum.

Option SR - Expanding the colour search range

Your Lane Keeping Assistant will announce control acceptance Expanding the colour search range is often necessary if covia an audio alert and your FCW system will issue a simultaneous lour signalling in the instrument cluster has to be tested siaudio alert. We experience this or various exemplary scenarios multaneously in different areas. Is the Lane Keeping daily on test tracks and in free traffic. The AVAD3 can work with Assistant displaying the correct information? Was the lane up to 100 different tones simultaneously so that it can test these detected and displayed accordingly? These and other scenarios. Minimum latency times (i.e. from 4ms) are used to challenges are faced by manufacturers and OEMs. AVAD3 test single or multiple frequency tones, including real-time enables you to test these systems with high accuracy and precision! This is realised through easy on-site configuration. These search functions can be saved as search profiles for

calling up later on.



Signalling occurs when a, b and/or a/b were detected.

Option EK - Combination of several events

Combine your search and alarm functions freely and interlink them with each other so that the AVAD3 alert is only triggered by a, b, c and/or links.

For example, an alarm should only be triggered if a red warning triangle appears in the instrument cluster. Shape and colour will be searched for and found and the signalling will be triggered accordingly. This saves you having to manually link the separate results in post-processing.

Shape being searched for displayed in green - no hit - no alert. Shape being searched for displayed in red -A hit! - signalling!

AVAD3 is ideally suited for developing, testing and validating acoustic and visual alarms for Autonomous Emergency Braking (AEB), Forward Collision Warning (FCW), Speed Assist Systems (SAS) and Lane Support Systems (LSS) in compliance with the EuroNCAP specifications.

These warning and control systems are essential for five-star ratings in the EuroNCAP rating. Their importance will continue to increase in the future.

AVAD3 is extremely fast and easy to use and it is successfully used by most manufacturers, OEMs and test laboratories for de- veloping and validating messages from driver assistance sys-tems.

Applicationareas:

- Auto Emergency Braking
- Adaptive Cruise Control
- Lane Support Systems
- Blind Spot Detection
- Park Assist Solutions

EuroNCAP test protocol:

- Speed Assist Systems
- Lane Support Systems
- AEB Systems (T AEB, TCW)

References

AVAD3 application areas

- EuroNCAP
- instrument cluster validation
- measures the signalling from the head-up display
- latency measuring between the control unit and the optical/acoustic signalling systems
- test stand applications
- noise measuring for E-vehicles

Specifications

- minimal latency times (i.e. from 4ms)
- 100 Hz frame rate (optional up to 300 Hz)
- CAN-and LAN outputting rate 1 KHz maximum
- the information delay between the alarm signal and the output as TTL, CAN or LAN information is in the range of just a few milliseconds
- status signals can activate the AVAD3 memory function or be used as markers

Features

- detection of patterns and colours as well as measuring dials
- detection of specific frequencies or multiple frequency tones including real time filters
- AVAD3 is unaffected by vibrations inside the car
- configuration via Internet Explorer browser, also via a laptop connected to the same network
- Measurement profiles can be saved at any time and reloaded later on

Optional enhancements

- CAN interface (with extended baud rates) with two channels for vehicle data
- up to 8 patterns, colours and colour search areas
- up to 100 simultaneous tones
- it is possible to use or select up to three measuring cameras simultaneously
- single measuring camera is optional up to 300 Hz
- triggering from bit patterns for ECU messages with latency time calculation
- LAN communications interface, e.g. with driving robots or Ethernet data loggers
- single result combinations logically linkable to an overall result

Contact details

DTC Navigation Solutions GmbH & Co. KG

Konrad-Zuse-Bogen 4, 82152 Krailling, Germany

Phone: +49 89 1250309-0 E-mail: info@dtc-solutions.de Web: www.dtc-solutions.de